Infinity Computing in Global and Local Optimization Dmitri E. Kvasov and Marat S. Mukhametzhanov

DIMES, University of Calabria, Italy, and Software Department, Lobachevsky Nizhni Novgorod State University, Russia email: {*kvadim, m.mukhametzhanov*}@*dimes.unical.it*

TARGETS OF THE RESEARCH

The research is dedicated to application of the Infinity Computer – a new type of a supercomputer able to work **numerically** with infinities and infinitesimals – in global and local optimization with costly and noisy objective functions. Important industrial applications: solution to expensive and ill-conditioned optimization problems in image processing and noisy data fitting.

multiparametric and multimodal costly objective function subject to nonlinear constraints.

A promising approach: extension of univariate methods to the multivariable case by means of diagonal space-filling curves ([9]).

However, the proposed deterministic methods (e.g., based on adaptive diagonal curves, ADC) demonstrate a much better performance with respect to widely used deterministic (e.g., DIRECT) and metaheuristic (e.g., genetic algorithm, GA) methods (see [4]).

INFINITY COMPUTING		
AN ASTONISHING ANALOGY	GROSSONE	Applications
Numeral system of the amazonian Pirahã tribe. They can count only 1, 2, many: many + 1 = many, many + 2 = many, many + many = many. Traditional views on infinity: $\infty + 1 = \infty, \infty + 2 = \infty,$ $\infty + \infty = \infty$	Grossone (①) is the number of elements of the set of natural numbers. The principles of work with ① are the same as with finite numbers (see Ya. Sergeyev. <i>Arithmetic of Infinity</i> , CS, 2nd ed 2013): $0 \cdot 0 = 0 \cdot 0 = 0$, $0 - 0 = 0$, $\frac{0}{0} = 1$, $0^{0} = 1$, $1^{0} = 1$, $0^{0} = 0$. The non-contradictory nature of the methodology has been proven in [5]. Numeral system allowing one to execute operations with finite, infinite and infinitesimal numbers in a unique framework has been implemented on the Infinity Computer (see the patents [8]).	 Global and local optimization Numerical differentiation Ordinary differential equations Turing machines Cellular automata Set theory Mathematical analysis Hyperbolic geometry and tiling Fractals and percolation, etc. (for details, see references in [7]).
NUMERICAL DIFFERENTIATION	TRADITIONAL COMPUTERS – ERRORS	INFINITY COMPUTER – NO ERROR
Suppose that we have a computer procedure $f(x)$ implementing the function $g(x) = \frac{x+1}{x-1}$ and we want to evaluate the value $f'(y)$ at the point $y = 3$. Numerical approximations are used for this purpose on traditional computers: $f'(x) \approx \frac{f(x+h) - f(x)}{h}, \ f'(x) \approx \frac{f(x) - f(x-h)}{h},$ $f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}.$	Relative error vs. stepsize $ \begin{array}{c} $	The Infinity Computer executes numerically the operations $f(3 + (1)^{-1}) = (3(1)^{0} + (1)^{-1} + 1(1)^{0})/(3(1)^{0} + (1)^{-1} - 1(1)^{0}) =$ $= 2(1)^{0} - 0.5(1)^{-1} + 0.25(1)^{-2} - 0.125(1)^{-3} + 0.0625(1)^{-4}$ From this numeral, we obtain (see [11]) $f(3) = 2, f'(3) = -0.5, f''(3) = 2! \cdot 0.25 = 0.5,$ $f^{(3)}(3) = 3! \cdot (-0.125) = 0.75,$ being <i>exact</i> values of $f(x)$ and the derivatives at the point $y = 3$.

INFINITY COMPUTING IN OPTIMIZATION

OBTAINED RESULTS

Infinity Computing has been successfully applied for solving important instances of ill-conditioned optimization problems [2,3]. New powerful multivariable optimization schemes have been proposed [4,6,9,10]: global optimization algorithms based on adaptive diagonal curves, acceleration techniques in derivative-free and smooth global optimization, grossone-based penalty functions in constrained optimization.

REFERENCES

- 1. R. De Leone. Nonlinear programming and grossone: Quadratic programming and the role of constraint qualifications. Applied Mathematics and Computation, 2017, in press.
- 2. M. Gaudioso, G. Giallombardo, M. S. Mukhametzhanov. Numerical infinitesimals in a variable metric method for convex nonsmooth optimization. Applied Mathematics and Computation, 2017, in press.
- 3. J. W. Gillard, D. E. Kvasov. Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Statistics and Its Interface, 10:59-70, 2017.
- 4. D. E. Kvasov, M. S. Mukhametzhanov. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Applied Mathematics and Computation, 2017, in press.
- 5. G. Lolli. Metamathematical investigations on the theory of Grossone. *Applied Mathematics and Computation*, 255:3–14, 2015.
- 6. R. Paulavičius, Ya. D. Sergeyev, D. E. Kvasov, J. Žilinskas. Globally-biased DISIMPL algorithm for expensive global optimization. Journal of Global Optimization, 59(2-3):545-567, 2014 (The Journal of Global Optimization Best Paper Award in 2014).

