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TARGETS OF THE RESEARCH

The research is dedicated to application of the Infinity Computer – a new type of a supercomputer able to work numerically with infinities and infinitesimals – in global and local optimization with costly and noisy
objective functions. Important industrial applications: solution to expensive and ill-conditioned optimization problems in image processing and noisy data fitting.

GLOBAL AND LOCAL OPTIMIZATION

EXPENSIVE GLOBAL OPTIMIZATION PROBLEMS
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A challenging problem: given a limited computational budget, it
is required to find a good approximation of the global solution to a
multiparametric and multimodal costly objective function subject to
nonlinear constraints.
A promising approach: extension of univariate methods to the mul-
tivariable case by means of diagonal space-filling curves ([9]).

APPLICATIONS IN NOISY DATA FITTING

A general nonlinear regression problem

f (x) =
T∑

t=1

(yt − η(x, t))2 → min
x∈Ω

, Ω ⊂ RN, N = 4q,

where yt, 1 ≤ t ≤ T , are real-valued observations corrupted by
noise, η(x, t) =

∑q
i=1 aiexp(dit)sin(2πωit + φi), 1 ≤ t ≤ T , [4q

parameters to identify, see [3]]
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Methods: Trials:

Smooth−LTM 63

Smooth−AK 71

Geom−LTM 44

Inf−GL 87

Geom−GL 109

Geom−AL 130

DE 306

PSO 383

FF 464

ABC 470

METAHEURISTIC VS DETERMINISTIC METHODS

Metaheuristics (as genetic or other nature-inspired algorithms) are
often used to study expensive black-box optimization problems.

However, the proposed deterministic methods (e.g., based on adap-
tive diagonal curves, ADC) demonstrate a much better performance
with respect to widely used deterministic (e.g., DIRECT) and meta-
heuristic (e.g., genetic algorithm, GA) methods (see [4]).

INFINITY COMPUTING

AN ASTONISHING ANALOGY

Numeral system of the amazonian Pirahã tribe.
They can count only 1, 2, many :

many + 1 = many , many + 2 = many ,

many + many = many .
Traditional views on infinity:

∞+ 1 =∞, ∞+ 2 =∞,

∞+∞ =∞
.

GROSSONE

Grossone (¬) is the number of elements of the set of natural num-
bers. The principles of work with ¬ are the same as with finite num-
bers (see Ya. Sergeyev. Arithmetic of Infinity, CS, 2nd ed 2013):

0 ·¬ = ¬ · 0 = 0, ¬−¬ = 0,
¬

¬
= 1, ¬0 = 1, 1¬ = 1, 0¬ = 0.

The non-contradictory nature of the methodology has been proven in
[5]. Numeral system allowing one to execute operations with finite,
infinite and infinitesimal numbers in a unique framework has been
implemented on the Infinity Computer (see the patents [8]).

APPLICATIONS

I Global and local optimization
I Numerical differentiation
I Ordinary differential equations
I Turing machines
I Cellular automata
I Set theory
I Mathematical analysis
I Hyperbolic geometry and tiling
I Fractals and percolation, etc. (for details, see references in [7]).

NUMERICAL DIFFERENTIATION

Suppose that we have a computer procedure f (x) implementing
the function g(x) = x+1

x−1 and we want to evaluate the value f ′(y)
at the point y = 3. Numerical approximations are used for this
purpose on traditional computers:

f ′(x) ≈
f (x + h)− f (x)

h
, f ′(x) ≈

f (x)− f (x − h)

h
,

f ′(x) ≈
f (x + h)− f (x − h)

2h
.

TRADITIONAL COMPUTERS – ERRORS
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INFINITY COMPUTER – NO ERROR

The Infinity Computer executes numerically the operations

f (3 + ¬−1) = (3¬0 + ¬−1 + 1¬0)/(3¬0 + ¬−1 − 1¬0) =

= 2¬0 − 0.5¬−1 + 0.25¬−2 − 0.125¬−3 + 0.0625¬−4 − ...
From this numeral, we obtain (see [11])

f (3) = 2, f ′(3) = −0.5, f ′′(3) = 2! · 0.25 = 0.5,

f (3)(3) = 3! · (−0.125) = 0.75,
being exact values of f (x) and the derivatives at the point y = 3.

INFINITY COMPUTING IN OPTIMIZATION

TRADITIONAL COMPUTERS: ILL-CONDITIONING

Underflows and overflows in traditional systems→ wrong solutions:
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(a) Graph of the function f(x)
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(b) Graph of the function g(x) = 10−17 f(x) + 1 in logarithmic form
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(c) Graph of the inverted function f1(x) = 1017(g(x)− 1)

INFINITY COMPUTER: WELL-CONDITIONING
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(b) Results on the function g
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(c) Results on the function h
3
(x)

①2

f3(x) =
5∑

k=1

−k · sin[(k + 1)x + k ], g3(x) = ¬−1f3(x) + ¬, h3(x) = ¬f3(x) + ¬2

CONSTRAINED OPTIMIZATION: EXACT PENALTY

min
x

1
2

x2
1 +

1
6

x2
2

subject to x1 + x2 = 1
Penalty approach:

min
x

1
2

x2
1 +

1
6

x2
2 +

P
2

(1− x1 − x2)2.

Traditional computers – iterative procedures with different P can
return approximated solutions only.
Infinity Computer – exact penalty P = ¬ (see [1]):

x∗1 =
1
4
−¬−1(

1
16
−

1
64

¬−1+. . .), x∗2 =
3
4
−¬−1(

3
16
−

3
64

¬−1+. . .)

The finite parts of x∗1 and x∗2 give us the exact solution to the
original constrained problem: x = (1

4,
3
4)

OBTAINED RESULTS

Infinity Computing has been successfully applied for solving important instances of ill-conditioned optimization problems [2,3]. New powerful multivariable optimization schemes have been proposed [4,6,9,10]:
global optimization algorithms based on adaptive diagonal curves, acceleration techniques in derivative-free and smooth global optimization, grossone-based penalty functions in constrained optimization.
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