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TARGETS OF THE RESEARCH

The research is dedicated to application of the Infinity Computer — a new type of a supercomputer able to work numerically with infinities and infinitesimals — in global and local optimization with costly and noisy
objective functions. Important industrial applications: solution to expensive and ill-conditioned optimization problems in image processing and noisy data fitting.

GLOBAL AND LOCAL OPTIMIZATION

EXPENSIVE GLOBAL OPTIMIZATION PROBLEMS
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A challenging problem: given a limited computational budget, it
IS required to find a good approximation of the global solution to a
multiparametric and multimodal costly objective function subject to
nonlinear constraints.

A promising approach: extension of univariate methods to the mul-
tivariable case by means of diagonal space-filling curves ([9]).

APPLICATIONS IN NOISY DATA FITTING

A general nonlinear regression problem
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f(x) = ;(Yt n(x,1)? — min, @ C RY, N = 4q,

where y;, 1 < t < T, are real-valued observations corrupted by
noise, n(x, t) = >_7_, ajexp(dit)sin(2rwit + ¢;), 1 < t < T, [4q
parameters to identify, see [3]]

100

50

Methods: o
Smooth—-LTM  t+++++++++++++++++ + ++ + + + + + +++ + 4+ + -+ H A+

Smooth—-AK t+++++++++++++++ A A
Geom-LTM  ++ + + + + + + +++ + + + + + + +++ +++ + +++++ Attt + b 44
Inf-GL A A 87
Geom-GL L B o e o o o o e s R XL
Geom-AL HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH A AR 130

DE R R A - SR SRR R HH - 306
PSO - S - ++ + + ++ | 383
FF A —HH R —HHHH - - 464
ABC CHH b PR b S B B HE R BB H- - SHHHHHR 470

! ! ! ! ! ! ! ! !
0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

METAHEURISTIC VS DETERMINISTIC METHODS

Metaheuristics (as genetic or other nature-inspired algorithms) are
often used to study expensive black-box optimization problems.
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However, the proposed deterministic methods (e.g., based on adap-
tive diagonal curves, ADC) demonstrate a much better performance
with respect to widely used deterministic (e.g., DIRECT) and meta-
heuristic (e.g., genetic algorithm, GA) methods (see [4]).

INFINITY COMPUTING

AN ASTONISHING ANALOGY

Numeral system of the amazonian Piraha tribe.
They can count only 1, 2, many:

many + 1 = many, many + 2 = many,

many + many = many.
Traditional views on infinity:

oo+ 1 =00, c0c+2 =00,

o0 + o0 = o0

NUMERICAL DIFFERENTIATION

Suppose that we have a computer procedure f(x) implementing

the function g(x) = i—ﬂ and we want to evaluate the value f'(y)
at the point y = 3. Numerical approximations are used for this

purpose on traditional computers:

f(x + h) — f(x)

f(x) — f(x — h)
h 9
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f'(x) = , F(x) =

f(x+ h) — f(x — h)

f(x) ~

GROSSONE

Grossone (@) is the number of elements of the set of natural num-
bers. The principles of work with @ are the same as with finite num-
bers (see Ya. Sergeyev. Arithmetic of Infinity, CS, 2nd ed 2013):

®
o-®=®-0=o,@—®=o,6:1,@":1,1@=1,0@=o.

The non-contradictory nature of the methodology has been proven in
[5]. Numeral system allowing one to execute operations with finite,
infinite and infinitesimal numbers in a unique framework has been
implemented on the Infinity Computer (see the patents [8]).

TRADITIONAL COMPUTERS — ERRORS

Relative error vs. stepsize

APPLICATIONS

» Global and local optimization

» Numerical differentiation

» Ordinary differential equations

» Turing machines

» Cellular automata

» Set theory

» Mathematical analysis

» Hyperbolic geometry and tiling

» Fractals and percolation, etc. (for details, see references in [7]).

INFINITY COMPUTER — NO ERROR

The Infinity Computer executes numerically the operations
fB+0 ) =B+ "+10% /B3 + @' —1@°%) =
=2@° — 0.507" + 0.25072 — 0.12502 4 0.06250 4 — ...
From this numeral, we obtain (see [11])
f(3) =2, f(3) = —0.5, f"(3) =2!-.0.25 = 0.5,
f®)(3) = 3! . (—0.125) = 0.75,
being exact values of f(x) and the derivatives at the point y = 3.

INFINITY COMPUTING IN OPTIMIZATION

TRADITIONAL COMPUTERS: ILL-CONDITIONING

Underflows and overflows in traditional systems — wrong solutions:
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(a) Graph of the function f(x)
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(b) Graph of the function g(x) = 1077 f(x) + 1 in logarithmic form
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(¢) Graph of the inverted function fi(x) = 10'7(g(x) — 1)

INFINITY COMPUTER: WELL-CONDITIONING
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(a) Results on the function f3(x)

41

@

*
Method: 9 Trials:
Geom—AL 4+++—+++H + -+ + 4+ + + + -+ + -+ i A A i - R 195
Inf—-GL -+ 4+t i+ 4 4+ A A+ A A+ + + &+ o+ A B A+ A A 72
Geom—LTM + H +-H + JH + H -+ - i+ W - - e+ - e+ o - 152

-10 -8 -6 -4 -2 (0} 2 4 6 8 10
(b) Results on the function gS(X)
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(c) Results on the function h3(x)
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fs(x) = > —k-sin[(k+1)x + k], gs(x) =D 'f(X) + @, hs(x) = Df(x) + @*
k=1

CONSTRAINED OPTIMIZATION: EXACT PENALTY

1 1

L N
min 2X1+6 A
subjectto x; + xo = 1

Penalty approach:

min %Xf + % 2+ EP(1 — X1 — X2)2.
Traditional computers — iterative procedures with different P can
return approximated solutions only.
Infinity Computer — exact penalty P = © (see [1]):
. 1 1,1 3 .3 3

X'=-—@ O '+, ), = — O (—=———D T +...
1 o) X 4 16 64 )

The finite parts of x; and x; give us the exact solution to the

original constrained problem: X = (3, 3

OBTAINED RESULTS

Infinity Computing has been successfully applied for solving important instances of ill-conditioned optimization problems [2,3]. New powerful multivariable optimization schemes have been proposed [4,6,9,10]:
global optimization algorithms based on adaptive diagonal curves, acceleration techniques in derivative-free and smooth global optimization, grossone-based penalty functions in constrained optimization.
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